Salt stains from evaporating droplets

نویسندگان

  • Noushine Shahidzadeh
  • Marthe F. L. Schut
  • Julie Desarnaud
  • Marc Prat
  • Daniel Bonn
چکیده

The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The onset of Marangoni convection for evaporating liquids by Brendan D. MacDonald A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mechanical and Industrial Engineering

The onset of Marangoni convection for evaporating liquids Brendan D. MacDonald Doctor of Philosophy Graduate Department of Mechanical and Industrial Engineering University of Toronto 2012 The stability of evaporating liquids is examined. The geometries investigated are semiinfinite liquid sheets, bounded liquid sheets, sessile droplets, and funnels. Stability parameters are generated to charact...

متن کامل

On the lifetimes of evaporating droplets

The complete description of the lifetime of a droplet on a solid substrate evaporating in a ‘stick–slide’ mode is obtained. The unexpectedly subtle relationship between the lifetime of such a droplet and the lifetimes of initially identical droplets evaporating in the extreme modes (namely the constant contact radius and constant contact angle modes) is described and summarised in an appropriat...

متن کامل

Measurements and simulations of the near-surface composition of evaporating ethanol-water droplets.

The evolving composition of evaporating ethanol-water droplets (initially 32.6 or 45.3 microm radius) is probed by stimulated Raman scattering over the period 0.2 to 3 ms following droplet generation and with a surrounding nitrogen gas pressure in the range 10 to 100 kPa. The dependence of the evaporation rate on the relative humidity of the surrounding gas phase is also reported. The measured ...

متن کامل

Evaporating droplet hologram simulation for digital in-line holography setup with divergent beam.

Generalized Lorenz-Mie theory (GLMT) for a multilayered sphere is used to simulate holograms produced by evaporating spherical droplets with refractive index gradient in the surrounding air/vapor mixture. Simulated holograms provide a physical interpretation of experimental holograms produced by evaporating Diethyl Ether droplets with diameter in the order of 50 μm and recorded in a digital in-...

متن کامل

Control of the particle distribution in inkjet printing through an evaporation-driven sol-gel transition.

A ring stain is often an undesirable consequence of droplet drying. Particles inside evaporating droplets with a pinned contact line are transported toward the periphery by radial flow. In this paper, we demonstrate how suspensions of laponite can be used to control the radial flow inside picoliter droplets and produce uniform deposits. The improvement in homogeneity arises from a sol-gel trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015